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How Fast Does Langton's Ant Move?

Jean Pierre Boon1

Received April 18, 2000; final July 13, 2000

The automaton known as ``Langton's ant'' exhibits a propagation phase where
the particle dynamics (the ant) produces a regular periodic pattern (called
``highway''). Despite the simplicity of its basic algorithm, Langton's ant has
remained a puzzle in terms of analytical description. Here I show that propaga-
tion dynamics obeys a general difference equation for a class of automata which
includes 1-D, 2-D triangular and square lattice models. In the case of Langton's
ant, the speed of the ant in the highway (c=- 2�52) follows exactly from the
equation.
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Langton's ant has been a recurring theme in the mathematical and physical
literature.(1) There are two reasons. The first is of physical relevance: the
automaton known as Langton's ant (which I describe below) offers a
prototype of complexity out of simplicity.(2) The second reason is mathe-
matical: despite the simplicity of the basic algorithm, the spatio-temporal
dynamics generated by the automaton (see Fig. 1) has so far resisted
analytical treatment.

The basic process governing the automaton dynamics follows a simple
rule. The automaton universe is the square lattice with checker board
parity so defining H sites and V sites. A particle moves from site to site (by
one lattice unit length) in the direction given by an indicator. One may
think of the indicator as a ``spin'' (up or down) defining the state of the site.
When the particle arrives at a site with spin up (down), it is scattered to
the right (left) making an angle of +?�2 (&?�2) with respect to its incom-
ing velocity vector. But the particle modifies the state of the visited site (up
� down) so that on its next visit, the particle is deflected in the direction
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Fig. 1. Langton's ant trajectory after 12,000 automaton time steps. The upper box is a blow-
up of the highway showing the periodic pattern. Sites with open squares and dark squares
have opposite spin states (up and down).

opposite to the scattering direction of its former visit. Thus the particle
entering from below a H site with spin up is scattered East, and on its next
visit to that same site (now with spin down), if it arrives from above, it will
be scattered East again, while if it arrives from below, it will be scattered
West. Similar reasoning shows how the particle is scattered North or South
on V sites.

At the initial time, all sites are in the same state (all spins up or all
spins down), and the position and velocity direction of the particle are
fixed, but arbitrary. So if we paint the sites black or white according to
their spin state, we start initially with say an all white universe. Then as the
particle moves, the visited sites turn alternately black and white depending
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on whether they are visited an odd or even number of times. This color
coding offers a way to observe the evolution of the automaton universe.
The particle starts exploring the universe by first creating centrally sym-
metric transient patterns (see figures in refs. 1), then after about 10,000
time steps (9977 to be precise), it leaves a seemingly ``random territory''2 to
enter a ``highway'' (see Fig. 1) showing a periodic pattern: in the highway,
the particle travels with constant propagation speed.3 Here, I show analyti-
cally that the propagation speed is c=- 2�52 (in lattice units) as measured
in automaton simulations.(1)

Because of the complexity of the dynamics on the square lattice,
Grosfils, Boon, Cohen, and Bunimovich(4) developed a one-dimensional
version of the automaton for which they provided a complete mathematical
analysis also applicable to the two-dimensional triangular lattice. One of
their main results is the mean-field equation describing the microscopic
dynamics of the particle subject to the more general condition that the
spins at the initial time are randomly distributed on the lattice. The equation
reads, for the one-dimensional lattice,

f (r+1, t)=q f (r, t&1)+(1&q) f (r, t&3) (1)

and, for the two-dimensional triangular lattice,

f (r+1, t)=q(1&q) f (r, t&2)+[q2+(1&q)2] f (r, t&8)

+(1&q) q f (r, t&14) (2)

where f (r, t) is the single particle distribution function, i.e., the probability
that the particle visits site r for the first time at time t, and q is the prob-
ability that the immediately previously visited site along the propagation
strip (the highway) has initially spin up, i.e., the probability that the par-
ticle be scattered, in the one-dimensional case, along the direction of its
velocity vector when arriving at the scattering site at r&1, and, in the two-
dimensional triangular case, along the direction forming clockwise an angle
of +2?�3 with respect to the incoming velocity vector of the particle. Equa-
tions (1) and (2) express the probability of a first visit at a site along the

357How Fast Does Langton's Ant Move?

2 The disordered phase is not what a random walk would produce: the automaton is deter-
ministic and its rules create correlations between successive states of the substrate, so also
between successive positions of the particle. The power spectrum computed from the particle
position time correlation function measured over the first 9977 time steps goes like &&&`

with `&4�3. In the ordered phase (``highway''), the power spectrum shows a peak at
&=1�104 with harmonics.

3 A theorem by Bunimovich and Troubetzkoy(3) demonstrates that the automaton fulfills the
conditions for unboundedness of the trajectory of the particle.



propagation strip in terms of the probability of an earlier visit at the pre-
vious site along the strip.4 The equations were shown to yield exact solu-
tions for propagative behavior in the two classes of models considered by
Grosfils et al.(4)

Equations (1) and (2) are particular cases of the following general
equation

f (r+\, t)= :
n

j=0

p j (q) f (r, t&{j ); {j=(1+:j ) m{;

(3)

:
n

j=0

pj=1; n�r�\

where, as above, f (r, t) is the first visit distribution function. Here \ denotes
the elementary space increment of the dynamics along the propagation strip;
pj is the probability that the particle propagates from r to r+\ in {j time
steps, i.e., {j is the time delay between two successive first visits on the strip
(more precisely on the one-dimensional edge of the strip) for the path with
probability pj , and m is the corresponding minimum number of automaton
time steps ({0=m{, where { is the automaton time step; {=1). The sum is
over all possible time delays, weighted by the probability pj (a polynomial
function of q). : denotes the number of lattice unit lengths in an ``elemen-
tary loop,'' i.e., the minimum number of lattice unit lengths necessary to
return to a site.5 Equation (3) implies the assumption that first visits occur
after a finite number of recurrences (n finite in Eq. (3)), i.e., a finite number
of possible paths (not identical loops) between two successive first visits;
this defines a general class of automata which includes the 1-D, 2-D tri-
angular and square lattice models.

Now from the expectation value of the time delay, computed with (3),

E[{(q)]= :
n

j=0

{ j pj (q)=(1+:( j ) ) m{; ( j ) = :
n

j=0

jpj (q) (4)

one obtains immediately the average propagation speed of the particle:
c(q)=\�E[{(q)].

It is straightforward to verify that Eqs. (1) and (2) are particular cases
of the general Eq. (3): for 1-D: :=2, m=1, \=1, n=1, with p0=q,
p1=1&q; for 2-D (triangular lattice): :=3, m=2, \=1, n=2, with
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4 In the two-dimensional case, the equation describes the one-dimensional propagation
motion along the edge of the strip.

5 An interesting equation follows from the continuous limit of (3); this is discussed elsewhere
(J. P. Boon, to be published).



p0=q(1&q), p1=q2+(1&q)2, p2=(1&q) q. The corresponding propaga-
tion speeds are then readily obtained from (4); for the one-dimensional
case one finds c(q)=1�({(q))=[1+2(1&q)]&1=1�(3&2q), and for the
triangular lattice: ({(q)) =[1+3(q2+(1&q)2+2q(1&q))]_2, so that
c=1�8. These results are in exact agreement with those obtained in ref. 4.

For the 2-D square lattice: :=4, m=2_4, \=2 - 2. The value of \
is easily checked by inspection of the highway path shown in the upper box
of Fig. 1: it is the length of the elementary increment along the edge of the
propagation strip. Correspondingly m is 2_4 (the minimum number of
time steps necessary to move one elementary space increment must be
counted on each edge of the strip). For the square lattice, one does not
know the value of n, but from the structure of the pj 's for the 1-D and 2-D
triangular lattices given above, one can infer that n=6, with p0= p6=
q2(1&q)2, p1= p5=q(1&q)[q2+(1&q)2], p2= p4= p0+ p1 , p3=[q2+
(1&q)2]2. However the precise expressions are unimportant for the
automaton describing Langton's ant, because all sites are initially in the
same spin state; so q=1, and only one pj is non-zero: p3=1. Equation (3)
then reads:

f (r+2 - 2, t)= f (r, t&{3); {3=(1+4_3) 2_4=104 (5)

which describes the dynamics of the particle in the highway. This result
shows that a displacement of length 2 - 2 along the edge of the strip is per-
formed in 104 automaton time steps. Consequently the propagation speed
of Langton's ant in the highway is c=\�{3=2 - 2�104=- 2�52.

Although the initial condition with all spins in the same state may
appear as a particular configuration, it should not be considered as a non-
typical one, in the sense that it produces propagation. In the 1-D and 2-D
triangular lattices, propagation always occurs regardless of the initial spin
configuration.(4) That in the square lattice, propagation only occurs with
all spins initially up or down (or periodically distributed6) is related to the
fact that the scattering angle here is \?�2, which can be conjectured as an
indication of criticality (at angles smaller than ?�2, propagation is never
observed).

The origin of particle propagation in 1-D and 2-D triangular lattices
was shown to be a ``blocking mechanism,''(4) and the question was raised
as to whether such a mechanism also exits in the square lattice. Although
the precise blocking mechanism has yet to be identified, that the same
general equation, Eq. (3), describes propagation in 1-D, 2-D triangular and
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6 Propagating patterns with different modes of propagation depending on the periodicity of
the spin distribution are discussed in ref. 5.



square lattices suggests that a similar blocking mechanism is responsible
for the construction of Langton's highway.

Note: In ref. 4, the ``reorganization corollary'' for the 2-D triangular
lattice (Corollary 3, p. 599) was incorrectly stated. It should read: All sites
located on one edge of the propagation strip are in the initial state of the sites
on the other edge, shifted upstream by one lattice unit length. The particle
dynamics can then be interpreted as the controller of a Turing machine
which transcribes and shifts the string of characters (0 and 1 for L and R)
of the input tape (on one edge) to the output tape (on the other edge). The
control operator is the EXCHANGE gate of Feynman's model of a quantum
computer.(6) The same corollary applies trivially to the spin states (up and
down spins interchanged as 0's and 1's) on the edges of the highway of
Langton's ant.
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